Προτεινόμενοι Σύνδεσμοι:    greece   -   greece hotels   -   ειδησεις   -   greece news   -   ταβλι στο internet   -   livescore   -   νέα
 easypedia

Easypedia.gr
Ελλάδα
Αρχαία Ελλάδα
Ελληνες
Πρωθυπουργοί
Οικονομία
Γεωγραφία
Ιστορία
Γλώσσα
Πληθυσμός
Μυθολογία
Πολιτισμός & Τέχνες
Ζωγραφική
Θέατρο
Κινηματογράφος
Λογοτεχνία
Μουσική
Αρχιτεκτονική
Γλυπτική
Αθλητισμός
Μυθολογία
Θρησκεία
Θετικές & Φυσικές Επιστήμες
Ανθρωπολογία
Αστρονομία
Βιολογία
Γεωλογία
Επιστήμη υπολογιστών
Μαθηματικά
Τεχνολογία
Φυσική
Χημεία
Ιατρική
Φιλοσοφία & Κοινωνικ. Επιστήμες
Αρχαιολογία
Γλωσσολογία
Οικονομικά
Φιλοσοφία
Ψυχολογία
Γεωγραφία
Ασία
Αφρική
Ευρώπη
Πόλεις
Χώρες
Θάλασσες
Ιστορία
Ελληνική Ιστορία
Αρχαία Ιστορία
Βυζάντιο
Ευρωπαϊκή Ιστορία
Πόλεμοι
Ρωμαϊκή Αυτοκρατορία
Σύγχρονη Ιστορία
 

Γραμμική Άλγεβρα

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Η γραμμική άλγεβρα είναι τομέας των μαθηματικών ο οποίος ασχολείται με τη μελέτη διανυσμάτων, διανυσματικών χώρων, γραμμικών απεικονίσεων και συστημάτων γραμμικών εξισώσεων. Η αναλυτική γεωμετρία αποτελεί έκφρασή της και η ίδια αποτελεί κεντρικό συνδετικό ιστό των σύγχρονων μαθηματικών, ιδιαιτέρως μέσω της αφηρημένης έννοιας του διανυσματικού χώρου η οποία μπορεί να μοντελοποιήσει πολλά διαφορετικά προβλήματα που συναντώνται στην πράξη.

Συνηθισμένη πρακτική είναι η προσέγγιση μη γραμμικών φαινομένων με γραμμικά μοντέλα (γραμμικοποίηση), προκειμένου να μπορούν να εφαρμοστούν οι μεθοδολογίες της γραμμικής άλγεβρας. Η εν λόγω γραμμικότητα αφορά το γεγονός ότι οι μεθοδολογίες αυτές εφαρμόζονται σε σύνολα συναρτήσεων οι οποίες στον τύπο τους περιέχουν μόνο πολυώνυμα πρώτου ή μηδενικού βαθμού και περιγράφουν σχέσεις μεταξύ ν-διάστατων διανυσμάτων. Οι συναρτήσεις αυτές ονομάζονται και γραμμικές επειδή εκφράζουν τις ευθείες γραμμές στην αναλυτική γεωμετρία.

Πίνακας περιεχομένων

Ιστορικό

Το κεντρικό υπόδειγμα στο οποίο στηρίχθηκε η γραμμική άλγεβρα είναι το γεωμετρικό ευκλείδειο επίπεδο. Η εισαγωγή του καρτεσιανού συστήματος συντεταγμένων και η συνακόλουθη ανάπτυξη της αναλυτικής γεωμετρίας, η οποία ένωσε την άλγεβρα με την ευκλείδεια γεωμετρία, έδωσε το έναυσμα για τη μελέτη των διανυσμάτων. Χάρη στο καρτεσιανό σύστημα τα τελευταία, από γεωμετρικά ευθύγραμμα τμήματα με μήκος και κατεύθυνση, άρχισαν να εκφράζονται ως ισοδύναμες ακολουθίες πραγματικών αριθμών: ένα οποιοδήποτε διατεταγμένο ζεύγος αριθμών εξέφραζε πλέον κάποιο διάνυσμα σε ένα δισδιάστατο σύστημα συντεταγμένων, ενώ μία οποιοδήποτε διατεταγμένη τριάδα αριθμών ισοδυναμούσε με ένα διάνυσμα σε κάποιο τρισδιάστατο σύστημα συντεταγμένων. Η φυσική σύντομα απαίτησε την επέκταση αυτών των ιδεών σε περισσότερες διαστάσεις, με αποτέλεσμα ως τον δέκατο ένατο αιώνα να γίνει στα μαθηματικά κοινός τόπος η μη διαισθητική αναφορά σε «χώρους» (αφηρημένες επεκτάσεις του καρτεσιανού επιπέδου και του τρισδιάστατου χώρου) πολλαπλών διαστάσεων, όπου κάποιες έννοιες όπως το εσωτερικό γινόμενο φαίνονταν δυσνόητες και χωρίς γεωμετρική αναλογία, καθώς οι άνθρωποι δεν μπορούσαν να τις οπτικοποιήσουν στη δεσμευμένη από τις τρεις διαστάσεις σκέψη τους, αλλά ορίζονταν και συμπεριφέρονταν εντελώς ανάλογα.

Πλέον κάθε διατεταγμένη ν-άδα αριθμών αντικατόπτριζε ένα ν-διάστατο διάνυσμα κάποιου αφηρημένου, ν-διάστατου χώρου. Το γεγονός αυτό είχε σημαντικές συνέπειες: πέρα από τα γεωμετρικά διανύσματα οτιδήποτε μπορούσε να αναπαρασταθεί ως διατεταγμένη ν-άδα αριθμών μπορούσε να αντιστοιχιστεί σε κάποιον νοητό αλγεβρικό χώρο (π.χ. οι πραγματικοί συντελεστές ενός πολυωνύμου). Περί τα μέσα του δεκάτου αιώνα εμφανίστηκαν οι πίνακες ως ένα νέο, ισχυρό εργαλείο στα μαθηματικά. Ένας πίνακας δεν είναι παρά μία συλλογή διανυσμάτων με αυτοτελή όμως δομή. Ένας ξεχωριστός λογισμός πινάκων άρχισε γρήγορα να αναπτύσσεται με αφετηρία την εργασία του Άρθουρ Κέυλυ το 1857. Όμως στις αρχές του εικοστού αιώνα είναι που η γραμμική άλγεβρα, θεμελιωμένη πλέον σε πορίσματα της αφηρημένης άλγεβρας και τις πρακτικές ανάγκες της νέας σχετικιστικής φυσικής, άρχισε να οριστικοποιείται και να λαμβάνει την τελική της μορφή και τη θέση της στον κόσμο των μαθηματικών. Πλέον ορισμένες ημιδιαισθητικές έννοιες γεωμετρικής καταγωγής, όπως η διάσταση, μπορούσαν να τυποποιηθούν με αυστηρή μη γεωμετρική ορολογία.

Διανυσματικοί χώροι

Ένα σύνολο παρόμοιων μαθηματικών οντοτήτων στο οποίο ορίζονται μεταξύ των στοιχείων του οι πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού, με πραγματικό ή μιγαδικό αριθμό, και αποτελεί σώμα με αυτές τις πράξεις ονομάζεται διανυσματικός χώρος. Παραδείγματα διανυσματικών χώρων είναι το σύνολο των πραγματικών διανυσμάτων ν συνιστωσών, το σύνολο των πολυωνύμων βαθμού ν, το σύνολο των μιγαδικών πινάκων μ x ν, το σύνολο των συνεχών συναρτήσεων από το R στο R κλπ. Φερειπείν, η πράξη της πρόσθεσης ορίζεται σε όλα τα προηγούμενα σύνολα (πρόσθεση διανυσμάτων, πινάκων, πολυωνύμων, συναρτήσεων) και έχει παρόμοιες ιδιότητες. Διανυσματικός υπόχωρος ενός διανυσματικού χώρου V ονομάζεται ένα υποσύνολο του V που περιέχει το μηδενικό στοιχείο της πρόσθεσης του V και είναι κλειστό ως προς την πρόσθεση και το βαθμωτό πολλαπλασιασμό. Παραδείγματα διανυσματικοί υπόχωρων του γεωμετρικού επιπέδου R2 (δηλαδή του συνόλου των πραγματικών διανυσμάτων δύο συνιστωσών) είναι το σύνολο που περιέχει μόνο το σημείο (0,0), όλος ο χώρος R2 και κάθε ευθεία που διέρχεται από την αρχή των αξόνων.

Ο αλγεβρικός λογισμός των πραγματικών αριθμών, των μιγαδικών αριθμών και των πολυωνύμων παρουσιάζει ποικίλες ομοιότητες όσον αφορά τα σύνολα στα οποία ορίζεται ο καθένας, τις επιτρεπτές πράξεις σε αυτά και τις ιδιότητες τους. Ο αλγεβρικός λογισμός των πινάκων όμως έχει τόσο ομοιότητες όσο και σημαντικές διαφορές. Καταρχάς στο λογισμό πινάκων θεωρούμε τα στοιχεία του συνόλου στο οποίο ορίζεται, του συνόλου όλων των πινάκων επί του R ή του C, άτμητα και αυτοτελή· με τη δική τους δομή και χωρίς να ανάγονται στα αριθμητικά στοιχεία που τους αποτελούν (ένα παράδειγμα ολισμού). Με τον ίδιο τρόπο θεωρούμε π. χ. και τα πολυώνυμα άτμητα και αυτοτελή, με τη δική τους εσωτερική λογική και όχι απλές συνενώσεις πραγματικών αριθμών και μεταβλητών. Επίσης η αφαίρεση, η πρόσθεση και ο βαθμωτός πολλαπλασιασμός είναι παρόμοιοι σε όλους τους προαναφερόμενους λογισμούς (αφού ορίζονται επί διανυσματικών χώρων).

Η βασική διαφορά εντοπίζεται στον πολλαπλασιασμό πινάκων: δεν είναι αντιμεταθετικός, δεν ορίζεται πάντα και μπορεί φερειπείν να ισχύει ΑΧ=0 με Α≠0 και Χ≠0. Αυτή η απομάκρυνση του πολλαπλασιασμού πινάκων από τις νομοτέλειες του (μη βαθμωτού) πολλαπλασιασμού σε άλλους διανυσματικούς χώρους οφείλεται στο ότι η πράξη αυτή εκφράζει κατά κάποιον τρόπο τη σύνθεση συναρτήσεων και όχι τον συνήθη πολλαπλασιασμό μεταξύ στοιχείων ενός διανυσματικού χώρου (όπως συμβαίνει π. χ. με το μη βαθμωτό πολλαπλασιασμό πολυωνύμων ή πραγματικών αριθμών). Η σύνθεση συναρτήσεων επίσης δεν είναι αντιμεταθετική και δεν ορίζεται πάντα. Από τις μοναδικές ιδιότητες του πολλαπλασιασμού πινάκων προκύπτει και η εξαιρετική σημασία που έχουν οι τετραγωνικοί πίνακες ν x ν σε σχέση με τους άλλους πίνακες. Μόνο τετραγωνικοί πίνακες μπορούν να:

  • είναι συμμετρικοί (A=A^T, ο πίνακας Α ισούται με τον ανάστροφο του)
  • είναι διαγώνιοι, τριγωνικοί
  • είναι αντιστρέψιμοι (A*A^-1=I, ο πίνακας Α επί τον αντίστροφο του ισούται με τον ταυτοτικό πίνακα)
  • είναι μετατιθέμενοι (A*B=B*A)
  • έχουν ορίζουσα
  • έχουν χαρακτηριστικά μεγέθη (ιδιοτιμές, ιδιοδιανύσματα)


Η μέθοδος της απαλοιφής Γκάους για την αριθμητική επίλυση συστημάτων γραμμικών εξισώσεων αποτελεί εκλέπτυνση και συστηματικοποίηση της παραδοσιακής μεθόδου απαλοιφής συντελεστών για την επίλυση συστημάτων. Ισοδυναμεί μαζί της σε αποτελεσματικότητα, όμως η απαλοιφή Γκάους και ο λογισμός των γραμμοπράξεων στον οποίο βασίζεται μας παρέχουν ένα πολύ ισχυρό εργαλείο περιγραφής πιο προχωρημένων αλγεβρικών δομών και φαινομένων.

Δεδομένου ενός διανυσματικού χώρου V και ενός υποσυνόλου του Κ, το σύνολο όλων των γραμμικών συνδυασμών μεταξύ στοιχείων του Κ (<Κ>) αποτελεί διανυσματικό υπόχωρο του V και ονομάζεται γραμμική θήκη ή γραμμικό περίβλημα του K. Αν ταυτίζεται με το V λέμε ότι το Κ παράγει το χώρο V ή ότι αποτελεί σύνολο γεννητόρων του V. Αν επιπλέον το Κ έχει πεπερασμένο πλήθος στοιχείων λέμε ότι ο V παράγεται πεπερασμένα. Φερειπείν το σύνολο των πολυωνύμων όλων των βαθμών είναι διανυσματικός χώρος αλλά δεν παράγεται πεπερασμένα, αφού σύνολο γεννητόρων του είναι το απειροσύνολο {1,χ,χ23...}. Αν τα στοιχεία του συνόλου Κ είναι γραμμικά ανεξάρτητα μεταξύ τους (δηλαδή κανένα δεν παράγεται από γραμμικό συνδυασμό των υπολοίπων) και το Κ παράγει το διανυσματικό χώρο V, τότε λέμε ότι το Κ αποτελεί βάση του V. Βάση δηλαδή είναι ένα ελάχιστο σύνολο γεννητόρων ενός χώρου V, τέτοιο ώστε όλα τα στοιχεία του V να μπορούν να παραχθούν από γραμμικούς συνδυασμούς στοιχείων της βάσης αλλά ένα στοιχείο της βάσης να μην μπορεί να παραχθεί από γραμμικούς συνδυασμούς των υπολοίπων. Το πλήθος των στοιχείων μίας βάσης ενός διανυσματικού χώρου V ονομάζεται διάσταση του V (dimV) και αποδεικνύεται ότι όλες οι διαφορετικές βάσεις ενός διανυσματικού χώρου έχουν την ίδια διάσταση. Επίσης αν dimV=ν, αποδεικνύεται ότι οποιαδήποτε ν-άδα γραμμικά ανεξάρτητων στοιχείων του V είναι βάση του, καθώς και ότι οποιαδήποτε ν-άδα αποτελεί σύνολο γεννητόρων του V είναι και βάση του V. Επίσης, αν Α είναι υπόχωρος ενός διανυσματικού χώρου V τότε dimA<=dimV -με την ισότητα να ισχύει μόνο όταν Α=V. Προκειμένου να υπολογίσουμε μία βάση ενός ΔΥ Α κάποιου ΔΧ V, όταν μας δίνεται ένα σύνολο γεννητόρων του Α (έστω Κ), ακολουθούμε τα εξής βήματα: 1) Εφαρμόζουμε τον ισομορφισμό του V με τον διανυσματικό χώρο R(dimV) και γράφουμε όλα τα στοιχεία του Κ ως διανύσματα προς την κανονική βάση του R(dimV) (π.χ. το πολυώνυμο 2χ2+3χ+2 είναι το διάνυσμα (2,3,2)). 2) Δημιουργούμε έναν πίνακα, κάθε γραμμή του οποίου είναι ένα από τα προαναφερόμενα διανύσματα, και εφαρμόζουμε το πρώτο στάδιο της απαλοιφής Γκάους (κλιμακοποίηση) σε αυτόν. 3) Οι γραμμές του προκύπτοντος πίνακα είναι τα στοιχεία μίας βάσης του Α (οι γραμμές ενός κλιμακωτού πίνακα είναι γραμμικά ανεξάρτητες).

Γραμμικές απεικονίσεις

Γραμμικές απεικονίσεις ή γραμμικοί μετασχηματισμοί ονομάζονται συναρτήσεις από έναν διανυσματικό χώρο σε έναν άλλον, τέτοιες ώστε να διατηρούν αναλλοίωτη τη δομή του. Συγκεκριμένα, η απεικόνιση f:V->W λέγεται γραμμική όταν ισχύει

f(λ1χ12χ2)=λ1f(χ1)+λ2f(x2).

Παράδειγμα αποτελεί η f που απεικονίζει το μηδενικό στοιχείο του V στο μηδενικό στοιχείο του W και μία βάση του V σε ένα σύνολο γεννητόρων του W. Αν επιπλέον η f είναι 1-1 και επί λέμε ότι αποτελεί ισομορφισμό και ότι οι δύο διανυσματικοί χώροι V και W είναι ισόμορφοι (η σχέση ισομορφισμού είναι σχέση ισοδυναμίας και διαμερίζει την κλάση των διανυσματικών χώρων σε κλάσεις ισοδυναμίας). Αποδεικνύεται ότι αν δύο διανυσματικοί χώροι είναι ισόμορφοι έχουν ίδια δομή όσον αφορά τις ιδιότητες τους, αν ένα υποσύνολο Κ του V είναι βάση του τότε το f(K) είναι βάση του W και αντίστροφα και ότι οι ισόμορφοι ΔΧ έχουν ίδια διάσταση (π.χ. το σύνολο των πραγματικών διδιάστατων διανυσμάτων και το σύνολο των πραγματικών διωνύμων είναι ισόμορφα). Επίσης όλοι οι διανυσματικοί χώροι διάστασης ν είναι ισόμορφοι με τον καρτεσιανό χώρο Rν (το σύνολο δηλαδή των ν-διάστατων διανυσμάτων).

Πυρήνας μίας γραμμικής απεικόνισης f από τον V στον W (Ker(f)) ονομάζεται το υποσύνολο του V που περιέχει όλα τα στοιχεία του V που απεικονίζονται μέσω της f στο μηδενικό στοιχείο του W. Αν η f είναι 1-1 ο πυρήνας της περιέχει μόνο το μηδενικό στοιχείο του V. Εικόνα της f (Im(f)) ονομάζεται το υποσύνολο του W που περιέχει όλα τα στοιχεία του στα οποία απεικονίζονται στοιχεία του V. Αν η f είναι επί τότε Im(f)=W. Επίσης ισχύει

dimV=dim(Ker(f))+dim(Im(f))

και ότι το σύνολο L(V,W) όλων των γραμμικών απεικονίσεων από τον V στον W είναι διανυσματικός χώρος.

Σε κάθε γραμμική απεικόνιση μπορεί να αντιστοιχιστεί ένας πίνακας που την περιγράφει, dimW γραμμών και dimV στηλών, ο οποίος υπολογίζεται με τη βοήθεια μίας βάσης του V και μίας βάσης του W και διαφέρει για διαφορετική επιλογή βάσεων. Ο πίνακας του αθροίσματος δύο γραμμικών απεικονίσεων είναι το άθροισμα των αντίστοιχων πινάκων, ενώ ο πίνακας της σύνθεσης δύο γραμμικών απεικονίσεων είναι το γινόμενο των αντίστοιχων πινάκων. Μία γραμμική απεικόνιση f είναι ισομορφισμός αν και μόνο αν ο πίνακας της είναι αντιστρέψιμος. Ο πίνακας της ταυτοτικής απεικόνισης f: V->V, όπου όμως χρησιμοποιείται διαφορετική βάση στο πεδίο ορισμού (Β1) και διαφορετική στο πεδίο τιμών (Β2), ονομάζεται πίνακας αλλαγής βάσης και είναι αντιστρέψιμος ως πίνακας ισομορφισμού. Επίσης αν Α είναι ο πίνακας μίας απεικόνισης f: V->V (όχι της ταυτοτικής), όπου χρησιμοποιείται κοινή βάση στο πεδίο ορισμού και στο πεδίο τιμών (Β1), και Γ ο πίνακας της f ως προς τη βάση Β2, τότε ισχύει Γ=(P^-1)AP, όπου P ο πίνακας αλλαγής βάσης από τη Β1 στη Β2. Δύο πίνακες που εκφράζουν την ίδια απεικόνιση f: V-> W αλλά με διαφορετική επιλογή βάσεων ονομάζονται ισοδύναμοι. Δύο πίνακες είναι ισοδύναμοι αν και μόνο αν έχουν την ίδια τάξη, όπου τάξη ενός πίνακα Α (rk(A)) ονομάζεται το πλήθος των γραμμικά ανεξάρτητων γραμμών του (ή στηλών του, ισούνται) και βρίσκεται με κλιμακοποίηση αφού η τάξη ενός πίνακα δε μεταβάλλεται αν εφαρμοστούν σε αυτόν στοιχειώδεις γραμμοπράξεις. Επίσης όμοιοι πίνακες ονομάζονται δύο πίνακες που εκφράζουν την ίδια απεικόνιση f: V-> V αλλά με διαφορετική επιλογή βάσεων (και ο κάθε πίνακας έχει ίδια βάση στο πεδίο ορισμού και στο πεδίο τιμών). Τέλος ένας τετραγωνικός πίνακας ν x ν είναι αντιστρέψιμος αν και μόνο αν έχει τάξη ν, δηλαδή αν όλες οι γραμμές του ή οι στήλες του είναι γραμμικά ανεξάρτητες.

Παρόλο που η απαλοιφή Γκάους μας προσφέρει μία αποδοτική μέθοδο αριθμητικής επίλυσης ενός συστήματος γραμμικών εξισώσεων, η θεωρία οριζουσών μας δίνει ένα ακόμα εργαλείο προς αυτήν την κατεύθυνση: έναν αναλυτικό τύπο για τον ίδιο σκοπό. Σε κάθε τετραγωνικό ν x ν πίνακα Α μπορεί να αντιστοιχιστεί ένας μοναδικός πραγματικός αριθμός, η ορίζουσα |Α|, ο οποίος υπολογίζεται με συγκεκριμένο τρόπο. Αποδεικνύεται ότι αν ένας ν x ν πίνακας έχει δύο γραμμές ή στήλες ίσες ή ανάλογες έχει ορίζουσα ίση με 0, ότι αν ένας ν x ν πίνακας έχει μία στήλη ή μία γραμμή που αποτελείται μόνο από 0 έχει ορίζουσα ίση με 0, ότι ένας τριγωνικός πίνακας έχει ορίζουσα ίση με το γινόμενο των στοιχείων της κυρίας διαγωνίου και ότι αν οι γραμμές ή οι στήλες ενός ν x ν πίνακα Α δεν είναι όλες γραμμικά ανεξάρτητες (οπότε έχει τάξη rkA < ν και άρα δεν είναι αντιστρέψιμος) τότε έχει ορίζουσα 0 και το αντίστροφο. Επίσης, αν σε έναν ν x ν πίνακα εφαρμόσουμε την τρίτη στοιχειώδη γραμμοπράξη (rn=rn+λrm) ο προκύπτον πίνακας έχει ίδια ορίζουσα με τον αρχικό, αν εφαρμόσουμε την πρώτη στοιχειώδη γραμμοπράξη (rn<->rm) ο προκύπτον πίνακας έχει αντίθετη ορίζουσα από τον αρχικό, και αν αν εφαρμόσουμε τη δεύτερη στοιχειώδη γραμμοπράξη (rn=λrn) ο προκύπτων πίνακας έχει ορίζουσα λ επί την ορίζουσα του αρχικού. Επίσης η ορίζουσα του γινομένου δύο πινάκων ισούται με το γινόμενο των επιμέρους οριζουσών, η ορίζουσα ενός ν x ν πίνακα ισούται με την ορίζουσα του αναστρόφου του και δύο όμοιοι πίνακες έχουν ίδια ορίζουσα.

Μάλιστα μία γραμμική απεικόνιση f: V -> V είναι αντιστρέψιμη (άρα 1-1) αν και μόνο αν ο πίνακας της είναι αντιστρέψιμος, έχει δηλαδή ορίζουσα διάφορη του 0. Ο τύπος του Κράμερ μας δίνει τη λύση ενός γραμμικού συστήματος ν αγνώστων και ν εξισώσεων, συναρτήσει των οριζουσών κάποιων παραλλαγών του πίνακα συντελεστών του συστήματος, αλλά έχει μόνο θεωρητικό ενδιαφέρον λόγω των πολλών πράξεων που απαιτεί· συνήθως χρησιμοποιείται η αριθμητική μέθοδος της απαλοιφής του Γκάους για την επίλυση και τέτοιων (ν x ν) συστημάτων. Πάντως αποδεικνύεται ότι σε ν x ν σύστημα ΑΧ=Β, αν η ορίζουσα του Α είναι 0 (οπότε ο Α δεν είναι αντιστρέψιμος) τότε το σύστημα είναι αδύνατο ή έχει άπειρες λύσεις συναρτήσει μιας παραμέτρου. Αν ο Α είναι αντιστρέψιμος (έχει δηλαδή ορίζουσα διάφορη του 0) τότε το σύστημα έχει μοναδική λύση που δίνεται από τον τύπο του Κράμερ (ή είναι το τετριμμένο μηδενικό διάνυσμα σε ομογενές σύστημα). Επίσης ισχύει ότι οποιοδήποτε γραμμικό σύστημα (όχι μόνο με Α τετραγωνικό) δεν είναι αδύνατο όταν η τάξη του Α ισούται με την τάξη του επαυξημένου πίνακα του συστήματος, ενώ από τη Θεωρία Οριζουσών προκύπτει κι ένας τύπος για την άμεση εύρεση του αντιστρόφου ενός αντιστρέψιμου πίνακα με χρήση οριζουσών.

Μία πραγματική τιμή λ λέγεται ιδιοτιμή ενός πίνακα Α αν υπάρχει τουλάχιστον ένα διάνυσμα χ τέτοιο ώστε Αχ=λχ <=> (Α-λΙ)χ=0 (1). Τα διανύσματα για τα οποία ισχύει αυτή η σχέση ονομάζονται ιδιοδιανύσματα του Α και το σύνολο των ιδιοδιανυσμάτων για δεδομένη ιδιοτιμή λi λέγεται ιδιόχωρος του Α για λi. Το ομογενές γραμμικό σύστημα (1) έχει λύση διάφορη της τετριμμένης μόνο όταν |Α-λΙ|=0.

Πηγές

  • Εισαγωγή στη Γραμμική Άλγεβρα, Δημήτριος Βάρσος κ. α., Εκδόσεις Σοφία

Εξωτερικοί σύνδεσμοι