Προτεινόμενοι Σύνδεσμοι:    greece   -   greece hotels   -   ειδησεις   -   greece news   -   ταβλι στο internet   -   livescore   -   νέα
 easypedia

Easypedia.gr
Ελλάδα
Αρχαία Ελλάδα
Ελληνες
Πρωθυπουργοί
Οικονομία
Γεωγραφία
Ιστορία
Γλώσσα
Πληθυσμός
Μυθολογία
Πολιτισμός & Τέχνες
Ζωγραφική
Θέατρο
Κινηματογράφος
Λογοτεχνία
Μουσική
Αρχιτεκτονική
Γλυπτική
Αθλητισμός
Μυθολογία
Θρησκεία
Θετικές & Φυσικές Επιστήμες
Ανθρωπολογία
Αστρονομία
Βιολογία
Γεωλογία
Επιστήμη υπολογιστών
Μαθηματικά
Τεχνολογία
Φυσική
Χημεία
Ιατρική
Φιλοσοφία & Κοινωνικ. Επιστήμες
Αρχαιολογία
Γλωσσολογία
Οικονομικά
Φιλοσοφία
Ψυχολογία
Γεωγραφία
Ασία
Αφρική
Ευρώπη
Πόλεις
Χώρες
Θάλασσες
Ιστορία
Ελληνική Ιστορία
Αρχαία Ιστορία
Βυζάντιο
Ευρωπαϊκή Ιστορία
Πόλεμοι
Ρωμαϊκή Αυτοκρατορία
Σύγχρονη Ιστορία
 

Δεκαεξαδικό σύστημα αρίθμησης

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Το δεκαεξαδικό σύστημα αρίθμησης είναι ένα θεσιακό σύστημα αναπαράστασης αριθμών. Έχει ως βάση του τον αριθμό 16. Αυτό σημαίνει ότι, σε μια σειρά ψηφίων, κάθε ψηφίο έχει αξία 16 φορές μεγαλύτερη από εκείνο που βρίσκεται αμέσως δεξιά του. Δηλαδή, οι θέσεις των ψηφίων στο δεκαεξαδικό σύστημα δηλώνουν μονάδες, 16άδες, 16 \times 16 =256άδες κ.ο.κ., σε αναλογία με το δεκαδικό σύστημα, όπου οι θέσεις δηλώνουν δυνάμεις του δέκα (μονάδες, δεκάδες, εκατοντάδες...)

Για την αναπαράστασή του, το δεκαεξαδικό σύστημα έχει ανάγκη 16 ψηφίων. Για τα πρώτα δέκα, χρησιμοποιούνται τα ψηφία 0 - 9 της αραβικής αναπαράστασης του δεκαδικού συστήματος. Για να αναπαρασταθούν οι αξίες από το 10 έως και το 15, δανειζόμαστε τα πρώτα 6 κεφαλαία γράμματα του λατινικού αλφαβήτου: A, B, C, D, E και F.

Για παράδειγμα, ο δεκαδικός αριθμός (79)10 (79, βάση 10) απεικονίζεται στο δεκαεξαδικό σαν (4F)16 (4F, βάση 16), δηλαδή:

(4F)_{16} = 4 \times 16 + 15 \times 1 = 64 + 15 = 79

Το δεκαεξαδικό σύστημα παρουσιάζει ειδικό ενδιαφέρον, γιατί υπάρχει μια 1-1 αντιστοιχία ανάμεσα σε κάθε δεκαεξαδικό ψηφίο και σε κάθε μία από τις ομάδες 4 ψηφίων του δυαδικού συστήματος. Αυτό οφείλεται στο γεγονός ότι το 16 είναι δύναμη του 2, 24 = 16. Εύκολα προκύπτει από αυτό ότι υπάρχουν 16 δυνατοί συνδυασμοί 4 ψηφίων, το καθένα από τα οποία μπορεί να είναι είτε "0" είτε "1", δηλ. τα ψηφία του δυαδικού συστήματος. Κάθε ένας από αυτούς τους συνδυασμούς αντιστοιχεί στο δεκαεξαδικό ψηφίο που παριστάνει την αριθμητική αξία του, ως εξής:


0hex = 0dec = 0oct 0 0 0 0
1hex = 1dec = 1oct 0 0 0 1
2hex = 2dec = 2oct 0 0 1 0
3hex = 3dec = 3oct 0 0 1 1
4hex = 4dec = 4oct 0 1 0 0
5hex = 5dec = 5oct 0 1 0 1
6hex = 6dec = 6oct 0 1 1 0
7hex = 7dec = 7oct 0 1 1 1
8hex = 8dec = 10oct 1 0 0 0
9hex = 9dec = 11oct 1 0 0 1
Ahex = 10dec = 12oct 1 0 1 0
Bhex = 11dec = 13oct 1 0 1 1
Chex = 12dec = 14oct 1 1 0 0
Dhex = 13dec = 15oct 1 1 0 1
Ehex = 14dec = 16oct 1 1 1 0
Fhex = 15dec = 17oct 1 1 1 1

Λόγω της αντιστοιχίας αυτής, το δεκαεξαδικό σύστημα, όπως και το οκταδικό, παίζουν σπουδαίο ρόλο στον προγραμματισμό των ηλεκτρονικών υπολογιστών. Η κύρια χρησιμότητά τους είναι να συμπτύσσουν ομάδες από bits (κάθε bit αναπαριστά ένα δυαδικό ψηφίο). Για παράδειγμα, δύο δεκαεξαδικά ψηφία μπορούν να κωδικοποιήσουν μια ψηφιολέξη (byte), δηλ. μια σειρά από 8 bits.

Δείτε επίσης

  • Σύστημα αρίθμησης