Προτεινόμενοι Σύνδεσμοι:    greece   -   greece hotels   -   ειδησεις   -   greece news   -   ταβλι στο internet   -   livescore   -   νέα
 easypedia

Easypedia.gr
Ελλάδα
Αρχαία Ελλάδα
Ελληνες
Πρωθυπουργοί
Οικονομία
Γεωγραφία
Ιστορία
Γλώσσα
Πληθυσμός
Μυθολογία
Πολιτισμός & Τέχνες
Ζωγραφική
Θέατρο
Κινηματογράφος
Λογοτεχνία
Μουσική
Αρχιτεκτονική
Γλυπτική
Αθλητισμός
Μυθολογία
Θρησκεία
Θετικές & Φυσικές Επιστήμες
Ανθρωπολογία
Αστρονομία
Βιολογία
Γεωλογία
Επιστήμη υπολογιστών
Μαθηματικά
Τεχνολογία
Φυσική
Χημεία
Ιατρική
Φιλοσοφία & Κοινωνικ. Επιστήμες
Αρχαιολογία
Γλωσσολογία
Οικονομικά
Φιλοσοφία
Ψυχολογία
Γεωγραφία
Ασία
Αφρική
Ευρώπη
Πόλεις
Χώρες
Θάλασσες
Ιστορία
Ελληνική Ιστορία
Αρχαία Ιστορία
Βυζάντιο
Ευρωπαϊκή Ιστορία
Πόλεμοι
Ρωμαϊκή Αυτοκρατορία
Σύγχρονη Ιστορία
 

Εκκεντρότητα

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Όλοι οι τύποι των κωνικών τομών, κατά αύξουσα εκκεντρότητα. Η καμπυλότητα μειώνεται όσο η εκκεντρότητα αυξάνεται.
Όλοι οι τύποι των κωνικών τομών, κατά αύξουσα εκκεντρότητα. Η καμπυλότητα μειώνεται όσο η εκκεντρότητα αυξάνεται.

Η εκκεντρότητα είναι ένα μέγεθος που χαρακτηρίζει κάθε κωνική τομή και κατ' επέκταση, καθώς όλες οι τροχιές σε πεδίο βαρύτητας είναι κωνικές τομές, και την τροχιά ενός ουράνιου σώματος γύρω από ένα άλλο. Ουσιαστικά είναι ένα μέτρο του πόσο η κωνική τομή "απέχει" από το να είναι τέλειος κύκλος. Ειδικότερα,

  • Η εκκεντρότητα ενός κύκλου είναι μηδέν
  • Η εκκεντρότητα μιας έλλειψης είναι μεγαλύτερη του μηδενός και μικρότερη του 1
  • Η εκκεντρότητα της παραβολής είναι ακριβώς 1
  • Η εκκεντρότητα της υπερβολής είναι μεγαλύτερη του 1 και πεπερασμένη
  • Η εκκεντρότητα μιας ευθείας είναι 1 ή άπειρο, ανάλογα με τον ορισμό.


Πίνακας περιεχομένων

Μαθηματικός ορισμός

Ο μαθηματικός τύπος που δίνει την εκκεντρότητα είναι:

e=\sqrt{1-k\frac{b^2}{a^2}}\,\!

όπου a\,\! είναι το μήκος του μεγάλου ημιάξονα της κωνικής τομής, b\,\! το μήκος του μικρού ημιάξονα, και το k\,\! είναι ίσο με +1 για την έλλειψη, 0 για την παραβολή και -1 για την υπερβολή.

Λέγεται επίσης πρώτη εκκεντρότητα όταν χρειάζεται να διακριθεί από τη δεύτερη εκκεντρότητα e', που χρησιμοποιείται μερικές φορές για ευκολία στους υπολογισμούς. Η δεύτερη εκκεντρότητα είναι:

e'=\sqrt{k\frac{a^2}{b^2}-1}\,\!

και σχετίζεται με την πρώτη εκκεντρότητα μέσω της εξίσωσης:

1=(1-e^2)(1+e'^2)\,\!

Έλλειψη

Σε μια έλλειψη, όπου το μήκος του μεγάλου ημιάξονα είναι a\,\! και το μήκος του μικρού ημιάξονα b\,\! η εκκεντρότητα, e\,\!, είναι το ημίτονο της γωνιακής εκκεντρότητας, που δίνεται από τον τύπο:

 o\!\varepsilon=\arccos\left(\frac{b}{a}\right)=2\arctan\left(\sqrt{\frac{a-b}{a+b}}\right)\,\!
e=\sin(o\!\varepsilon)=\sqrt{1-\frac{b^2}{a^2}}\,\!

Η εκκεντρότητα είναι ο λόγος της απόστασης μεταξύ των εστιών (F_1\,\! και F_2\,\!) προς το μήκος του μεγάλου άξονα (AB\,\!):

{}_{\left(\frac{\overline{F_1F_2}}{\overline{AB}}\right)}\,\!.

Παρόμοια, η δεύτερη εκκεντρότητα είναι η εφαπτομένη της γωνιακής εκκεντρότητας:

e'=\tan(o\!\varepsilon)=\sqrt{\frac{a^2}{b^2}-1}\,\!

Ευθεία

Μια ευθεία ή ευθύγραμμο τμήμα μπορεί να θεωρηθεί σαν έλλειψη με μικρό άξονα μηδενικού μήκους. Έτσι το είναι μηδέν, κι αν αντικαταστήσουμε αυτή την τιμή στην εξίσωση της εκκεντρότητας, το αποτέλεσμα είναι 1.

Αν ορίσουμε μια κωνική τομή σαν τον γεωμετρικό τόπο των σημείων Q γύρω από ένα σημείο P και τη διευθετούσα L, όπου \overline{PQ} = e\overline{LQ} με \overline{LQ} την κάθετη απόσταση από τη διευθετούσα στο Q και e η εκκεντρότητα, τότε η τιμή e=∞ θα δώσει μια ευθεία.

Υπερβολή

Για κάθε υπερβολή, ο τύπος που δίνει την εκκεντρότητα είναι:

e=\sqrt{1+\frac{b^2}{a^2}}\,\!

με a\,\! το μήκος του μεγάλου ημιάξονα και b\,\! το μήκος του μικρού ημιάξονα.

Επιφάνειες

Η εκκεντρότητα μιας επιφάνειας είναι η εκκεντρότητα μιας ορισμένη τομής της. Για παράδειγμα, σε ένα τριασδιάστατο ελλειψοειδές η μεσημβρινή εκκεντρότητα είναι αυτή της έλλειψης που σχηματίζεται από μια τομή που περιέχει το μεγάλο και το μικρό άξονα (ένας από τους οποίους θα είναι ο πολικός άξονας) και η ισημερινή εκκεντρότητα είναι της έλλειψης που δημιουργείται από μια τομή που διέρχεται από το κέντρο, κάθετα στον πολικό άξονα.

Εκκεντρότητα τροχιάς

Παραδείγματα τροχιών για διάφορες τιμές της εκκεντρότητας
Παραδείγματα τροχιών για διάφορες τιμές της εκκεντρότητας

Σύμφωνα με τα αξιώματα της Αστροδυναμικής, κάθε τροχιά ενός σώματος γύρω από ένα άλλο σε πεδίο βαρυτικών δυνάμεων είναι κωνική τομή. Η εκκεντρότητα αυτής της κωνικής τομής, ή αλλιώς τροχιακή εκκεντρότητα ή εκκεντρότητα τροχιάς, είναι σημαντική παράμετρος που καθορίζει το σχήμα της, και εξαρτάται μεταξύ άλλων και από τα ενεργειακά χαρακτηριστικά της.

Όπως και στον μαθηματικό ορισμό της, η εκκεντρότητα της τροχιάς (e\,\!) παίρνει τις ακόλουθες τιμές

  • για κυκλική τροχιά: e=0\,\!
  • για ελλειπτική τροχιά: 0<e<1\,\!
  • για παραβολική τροχιά: e=1\,\!
  • για υπερβολική τροχιά: e>1\,\!

Για τις ελλειπτικές τροχιές μπορεί εύκολα να αποδειχτεί ότι το sin−1e δίνει τη γωνία προβολής ενός τέλειου κύκλου σε έλλειψη εκκεντρότητας e. Έτσι, για να πάρουμε μια ιδέα της εκκεντρότητας της τροχιάς π.χ. του Ερμή (με εκκεντρότητα 0.2056), υπολογίζουμε σύμφωνα με τον παραπάνω τύπο γωνία προβολής 11,86 μοιρών. Αν τώρα γείρουμε ένα κυκλικό αντικείμενο, ειδωμένο από πάνω, κατ' αυτή τη γωνία σε σχέση με το οριζόντιο, η φαινόμενη έλλειψη που θα αντικρίσουμε θα έχει την ίδια εκκεντρότητα με την τροχιά του πλανήτη.

Υπολογισμός

Η εκκεντρότητα μιας τροχιάς μπορεί να υπολογιστεί από τα διανύσματα της θέσης και της ταχύτητας ενός κινητού ως μέτρο του διανύσματος της εκκεντρότητας:

e= \left | \mathbf{e} \right |

όπου \mathbf{e}\,\! είναι το διάνυσμα της εκκεντρότητας.

Για τις ελλειπτικές τροχιές μπορεί επίσης να υπολογιστεί από την απόσταση ανάμεσα στο περίκεντρο και το απόκεντρο:

e={{d_a-d_p}\over{d_a+d_p}}
=1-\frac{2}{(d_a/d_p)+1}

όπου:

  • d_p\,\! είναι η απόσταση στο περίκεντρο (πλησιέστερο σημείο της τροχιάς στο κέντρο),
  • d_a\,\! είναι η απόσταση στο απόκεντρο (στο σημείο της τροχιάς που απέχει περισσότερο από το κέντρο).

Παραδείγματα

Η εκκεντρότητα της τροχιάς της γης είναι σήμερα 0,0167. Με το πέρασμα των αιώνων, η εκκεντρότητα αυτή μεταβάλλεται από σχεδόν 0 σε περίπου 0,05, ως αποτέλεσμα της βαρυτικής αλληλεπίδρασης με τα άλλα σώματα του ηλιακού συστήματος.

Ο πλανήτης Ερμής (με εκκεντρότητα 0,2056) είναι ο πλανήτης με την πιο έκκεντρη τροχιά στο ηλιακό μας σύστημα. Πριν τον επανακαθορισμό της έννοιας του πλανήτη από τη Διεθνή Αστρονομική Ένωση το 2006, ο πλανήτης νάνος Πλούτωνας κατείχε τον τίτλο, με εκκεντρότητα 0,0248. Η τροχιά της Σελήνης επίσης χαρακτηρίζεται από μεγάλη εκκεντρότητα (0,0554) σε σχέση με τις τροχιές άλλων σωμάτων του ηλιακού συστήματος.

Οι περισσότεροι αστεροειδείς έχουν εκκεντρότητες μεταξύ 0 και 0,35, με μέση τιμή 0,17.[1] Οι μεγάλες αυτές τιμές οφείλονται στη βαρυτική επίδραση του Δία και σε παλαιότερες συγκρούσεις.

Η εκκεντρότητα των κομητών είναι συνήθως κοντά στο 1. Οι περιοδικοί κομήτες έχουν τροχιές μεγάλης εκκεντρότητας, λίγο κάτω από 1. Η ελλειπτική τροχιά του Κομήτη του Χάλεϊ έχει εκκεντρότητα 0,967. Οι μη-περιοδικοί κομήτες, δηλαδή αυτοί που δεν επιστρέφουν στο ηλιακό μας σύστημα, ακολουθούν σχεδόν παραβολικές τροχιές κι έτσι η εκκεντρότητά τους επλησιάζει το 1. Παραείγματα αποτελούν ο Κομήτης Χέιλ-Μποπ με 0.995086 και ο Κομήτης Μακνώτ με 1.000030. Ο κομήτης Χέϊλ Μποπ έχει εκκεντρότητα μικρότερη του 1, δηλαδή η τροχιά του είναι ελλειπτική και τελικά θα επιστρέψει, όμως αυτό θα συμβεί το έτος 4.380. Η τροχιά του κομήτη Μακνώτ, από την άλλη, είναι υπερβολική κι έτσι ο κομήτης θα εγκαταλείψει το ηλιακό σύστημα για πάντα.

Ο Τρίτωνας, ο μεγαλύτερος δορυφόρος του πλανήτη Ποσειδώνα, πιστεύεται ότι είναι το μοναδικό ουράνιο σώμα στο δικό μας ηλιακό σύστημα του οποίου η τροχιά είναι απόλυτα κυκλική με εκκεντρότητα μηδέν.

Εκκεντρότητες της τροχιάς των πλανητών

Η εκκεντρότητα της τροχιάς των πλανητών και των νάνων πλανητών του ηλιακού μας συστήματος παρατίθεται στους παρακάτω πίνακες.

Πλανήτες
Ερμής 0,20563069
Αφροδίτη 0,00677323
Γη 0,01671022
Άρης 0,09341233
Δίας 0,04839266
Κρόνος 0,05415060
Ουρανός 0,04716771
Ποσειδώνας 0,00858587
Πλανήτες νάνοι
Δήμητρα 0,080
Πλούτωνας 0,24880766
Έριδα 0,44177

Εκκεντρότητα και εποχές

Η διάρκεια των εποχών είναι ανάλογη με το εμβαδό που σαρώνει το διάνυσμα θέσης της Γης μεταξύ ισημεριών και ηλιοστασίων, κι έτσι όταν η εκκεντρότητα είναι μεγάλη οι εποχές που εμφανίζονται όταν ο πλανήτης είναι στο πιο απομακρυσμένο σημείο της τροχιάς του (αφήλιο) θα είναι μεγαλύτερες σε διάρκεια. Σήμερα, ο χειμώνας και το φθινόπωρο του βόρειου ημισφαιρίου εμφανίζονται στο περιήλιο, όταν η Γη κινείται με την μεγαλύτερη ταχύτητα πάνω στην τροχιά της. Σαν αποτέλεσμα, οι δυο αυτές εποχές είναι λίγο συντομότερες από την άνοιξη και το καλοκαίρι, Το 2006, το καλοκαίρι ήταν 4,66 μέρες μεγαλύτερο από το χειμώνα και η άνοιξη 2,9 μέρες μεγακύτερη σε διάρκεια από το φθινόπωρο. [2] Η μετάπτωση των ισημεριών μεταβάλλει σιγά-σιγά το σημείο της τροχιάς όπου σημειώνονται τα ηλιοστάσια και οι ισημερίες. Μέσα στα επόμενα 10.000 χρόνια, οι χειμώνες του βόρειου ημισφαιρίου θα γίνουν προοδευτικά μεγαλύτεροι σε διάρκεια και τα καλοκαίρια μικρότερα. Η θερμοκρασία του πλανήτη όμως δεν θα ελαττωθεί λόγω αυτού του γεγονότος, καθώς η εκκεντρότητα της τροχιάς της Γης θα έχει πέσει τότε στη μισή τιμή από τη σημερινή, κάτι που σημαίνει μικρότερη μέση απόσταση από τον Ήλιο και μεγαλύτερες θερμοκρασίες λόγω μεγαλύτερης εισροής ηλιακής ενέργειας.

Παραπομπές

  1. http://filer.case.edu/sjr16/advanced/asteroid.html
  2. http://members.aol.com/gregbenson/iceage.htm