Προτεινόμενοι Σύνδεσμοι:    greece   -   greece hotels   -   ειδησεις   -   greece news   -   ταβλι στο internet   -   livescore   -   νέα
 easypedia

Easypedia.gr
Ελλάδα
Αρχαία Ελλάδα
Ελληνες
Πρωθυπουργοί
Οικονομία
Γεωγραφία
Ιστορία
Γλώσσα
Πληθυσμός
Μυθολογία
Πολιτισμός & Τέχνες
Ζωγραφική
Θέατρο
Κινηματογράφος
Λογοτεχνία
Μουσική
Αρχιτεκτονική
Γλυπτική
Αθλητισμός
Μυθολογία
Θρησκεία
Θετικές & Φυσικές Επιστήμες
Ανθρωπολογία
Αστρονομία
Βιολογία
Γεωλογία
Επιστήμη υπολογιστών
Μαθηματικά
Τεχνολογία
Φυσική
Χημεία
Ιατρική
Φιλοσοφία & Κοινωνικ. Επιστήμες
Αρχαιολογία
Γλωσσολογία
Οικονομικά
Φιλοσοφία
Ψυχολογία
Γεωγραφία
Ασία
Αφρική
Ευρώπη
Πόλεις
Χώρες
Θάλασσες
Ιστορία
Ελληνική Ιστορία
Αρχαία Ιστορία
Βυζάντιο
Ευρωπαϊκή Ιστορία
Πόλεμοι
Ρωμαϊκή Αυτοκρατορία
Σύγχρονη Ιστορία
 

Συνάρτηση

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Γραφική παράσταση μιας συνάρτησης,
Γραφική παράσταση μιας συνάρτησης,
\begin{align}&\scriptstyle f \colon [-1,1.5] \to [-1,1.5] \\ &\textstyle x \mapsto \frac{(4x^3-6x^2+1)\sqrt{x+1}}{3-x}\end{align}

Η έννοια της συνάρτησης ή απεικόνισης όπως ονομάζεται διαφορετικά, στα μαθηματικά εκφράζει τη διαισθητική ιδέα της ντετερμινιστικής εξάρτησης μιας ποσότητας από μια άλλη. Μια συνάρτηση είναι ο τρόπος ή κανόνας με τον οποίο αντιστοιχίζεται μία μοναδική τιμή της εξαρτημένης ποσότητας σε κάθε τιμή της ανεξάρτητης ποσότητας. Μεταξύ δύο συνόλων, συνάρτηση είναι ο κανόνας με τον οποίο σε κάθε στοιχείο του ενός συνόλου από τα δύο σύνολα αντιστοιχίζεται μοναδικό στοιχείο του άλλου συνόλου.

Αν Α και Β είναι δύο σύνολα, γράφουμε f : Α → Β για μια αντιστοίχιση από το Α στο Β. Το Α λέγεται σύνολο ορισμού και το Β σύνολο τιμών. Κάθε στοιχείο a του Α λέγεται όρισμα της f και κάθε στοιχείο b του Β στο οποίο αντιστοιχίζεται ένα τουλάχιστον όρισμα a λέγεται τιμή ή εικόνα της f στο a, και γράφουμε b = f(a). Σύμφωνα με τον παραπάνω ορισμό, για να είναι η f συνάρτηση, θα πρέπει

αν f(a) ≠ f(a') τότε a ≠ a'

δηλαδή δυο τιμές που είναι διαφορετικές να μην αντιστοιχούν παρά σε διαφορετικά ορίσματα. Λέμε τότε ότι η f είναι καλά ορισμένη (ενν. ως συνάρτηση).

Ο όρος απεικόνιση χρησιμοποιείται συνήθως γενικευτικά, στην περίπτωση που τα σύνολα Α και Β (ιδιαίτερα το Β), δεν είναι συνήθη σύνολα αριθμών.

Το γράφημα της συνάρτησης f : A → B είναι το σύνολο που αποτελείται από τα ζευγάρια της αντιστοίχισης

G(f) = {(a,b)∈ A×B, όπου b = f(a)}

Η αντίστροφη αντιστοίχιση f-1 της συνάρτησης f είναι η αντιστοίχιση από το Β στο Α, που ορίζεται ως εξής:

f-1(b) = a ανν f(a) = b

Η αντίστροφη αντιστοίχιση μιας συνάρτησης δεν είναι πάντοτε συνάρτηση, μια και δεν υπακούει απαραίτητα στο αξίωμα μονοτιμίας: ένα στοιχείο b μπορεί να είναι τιμή δύο διαφορετικών ορισμάτων a και a' της f. Στην περίπτωση πάντως που είναι, η f λέγεται αντιστρέψιμη και η f-1 αντίστροφη συνάρτηση της f.

Πίνακας περιεχομένων

Ορισμοί

  • Στα πλαίσια της θεωρίας συνόλων η συνάρτηση ορίζεται από το γράφημά της. Συγκεκριμένα, μια συνάρτηση f : A → B θεωρείται ως σχέση μεταξύ των Α και Β, δηλαδή ως ένα σύνολο f ⊂ A×B, η οποία υπακούει στο αξίωμα της μονοτιμίας, που εδώ παίρνει την εξής μορφή:
αν (a,b) ∈ f και (a,b') ∈ f τότε b = b'
  • Από την άποψη της μαθηματικής λογικής, η έννοια της συνάρτησης εκφράζεται με βάση μια τυπική γλώσσα ως ένα σύμβολο f βαθμού 2, το οποίο πάλι υπακούει στο αξίωμα μονοτιμίας:
αν f(a,b) και f(a,b') τότε b ≡ b'
  • Στα πλαίσια του λαμδαλογισμού, η έννοια της συνάρτησης εκφράζεται με βάση μία τυπική γλώσσα ως λογικός όρος t, ο οποίος μπορεί αξιωματικά να
    • εφαρμόζεται σε άλλον όρο s, ο οποίος συμπεριφέρεται ως όρισμα, με αποτέλεσμα έναν νέο όρο t(s)
    • λαμδαποσπάται ως προς κάποια του μεταβλητή x, με αποτέλεσμα έναν νέο όρο λx.t, ο οποίος συμπεριφέρεται ως γενικός κανόνας αντιστοίχισης μέσα από τον κανόνα της αντικατάστασης:
      (λx.t)(s) = t[x:=s]
      Η συνηθισμένη διαισθητική ερμηνεία των παραπάνω είναι ότι "το x αντιστοιχίζεται στο t(x), ώστε αν εφαρμοστεί σε όρισμα s, τότε θα προκύψει η τιμή t(s)".

Είδη συναρτήσεων

  • Μία συνάρτηση f : A → B λέγεται ένα προς ένα (1-1) ή αμφιμονότιμη ή αμφιμονοσήμαντη ή ένεση, όταν αντιστοιχίζει κάθε όρισμα σε αποκλειστικά δική του τιμή, δηλαδή όταν διαφορετικά ορίσματα απεικονίζονται σε διαφορετικές τιμές:
αν a ≠ a' τότε f(a) ≠ f(a')
  • Μία συνάρτηση f : A → B λέγεται επί (με την έννοια: "το Α απεικονίζεται μέσω της f επί του Β, πάνω στο Β") ή έφεση, όταν δεν υπάρχει στοιχείο στο Β που να μην είναι η εικόνα κάποιου στοιχείου στο Α:
για κάθε b∈B υπάρχει a∈A ώστε b = f(a)
  • Μία συνάρτηση ταυτόχρονα αμφιμονότιμη και επί λέγεται αμφίεση.
Από πολλούς μαθηματικούς, ο όρος "αμφιμονότιμη συνάρτηση" δεν χρησιμοποιείται ως συνώνυμο του "ένα προς ένα συνάρτηση" παρά ως συνώνυμο του "αμφίεση". Το δε επίθημα "-εση" (<ίημι) αποδίνει το γαλλικό "-jection" (<λατ. jacere), και έτσι τα "ένεση-έφεση-αμφίεση" αποδίνουν τα "injection-surjection-bijection" αντίστοιχα, τα οποία έχουν επικρατήσει στη δυτική μαθηματική νομενκλατούρα.

Σύγκριση συναρτήσεων και πράξεις

Μία συνάρτηση f είναι ίση με μία συνάρτηση g όταν έχουν το ίδιο σύνολο ορισμού, το ίδιο σύνολο τιμών και αντιστοιχίζουν ίσα ορίσματα σε ίσες τιμές:

f(a) = b ανν g(a) = b

Σύμφωνα εξάλλου με τη συνολοθεωρητική προσέγγιση, δύο συναρτήσεις είναι ίσες όταν τα γραφήματά τους ταυτίζονται (ως σύνολα).

  • Η (ξένη) ένωση δύο συναρτήσεων f : A → B και g : A' → B', όπου τα Α, Α' είναι σύνολα ξένα μεταξύ τους, είναι η αντιστοίχιση f∪g: A∪A' → B∪B' που ορίζεται ως
f∪g(a) = f(a) και f∪g(a') = g(a')

για κάθε a∈A, a'∈A'.

  • Η τομή δύο συναρτήσεων f : A → B και g : A' → B' είναι η αντιστοίχιση f∩g: A∩A' → B∩B' που ορίζεται ως
f∩g(a) = b ανν f(a)=g(a)=b

για κάθε a∈ A∩A'.

  • Η σύνθεση της συνάρτησης f : A → B με την g : B → C είναι η αντιστοίχιση gof: A → C, που ορίζεται ως
gof(a) = g(f(a))

για κάθε a∈ A∩A'.

Ιδιότητες

  • Μια συνάρτηση είναι αντιστρέψιμη αν και μόνο αν είναι αμφίεση.
  • H ένωση δύο συναρτήσεων είναι πάλι συνάρτηση, ενώ η τομή όχι πάντα (ωστόσο είναι πάντα μερική συνάρτηση, δες παρακάτω).
  • Η σύνθεση δύο συναρτήσεων είναι επίσης συνάρτηση.
  • Αν f : A → B και g : B → C είναι ενέσεις τότε και η σύνθεσή τους gof είναι ένεση.
  • Αν f : A → B και g : B → C είναι εφέσεις τότε και η σύνθεσή τους gof είναι έφεση.

Γενικεύσεις

  • Μία αντιστοίχιση f : A → B, η οποία δεν είναι απαραίτητα μονότιμη, αλλά μπορεί να αποδίνει περισσότερες από μία τιμές σε ένα όρισμα, λέγεται πολύτιμη ή πλειότιμη ή πολυσήμαντη συνάρτηση. Παράδειγμα πολύτιμης συνάρτησης είναι η αντίστροφη αντιστοίχιση μιας συνάρτησης.
  • Μία αντιστοίχιση f : A → B, η οποία δεν αποδίνει απαραίτητα τιμή σε κάθε όρισμα από το Α, λέγεται μερική συνάρτηση, και στην αντίθετη περίπτωση, ολική συνάρτηση. Στην περίπτωση της μερικής συνάρτησης, λέμε ότι η f ορίζεται σε κάποιο στοιχείο a του Α όταν το αντιστοιχίζει σε κάποιο στοιχείο b του Β· το υποσύνολο Α' του συνόλου ορισμού Α στο οποίο η f ορίζεται, λέγεται πεδίο ορισμού (ακόμη, πεδίο), και το υποσύνολο Β' του συνόλου τιμών Β, που αποτελείται από τις εικόνες της f, λέγεται πεδίο τιμών (ακόμη, συμπεδίο) της f.
  • Μία αντιστοίχιση F : (A → B) → C, που δέχεται δηλαδή συναρτήσεις f : A → B ως ορίσματα και τους αποδίνει τιμή F(f) μέσα στο C, και ακόμη υπακούει στο αξίωμα της μονοτιμίας, λέγεται συναρτησιακό ή συναρτησοειδές. Τυπικά παραδείγματα συναρτησιακών στη μαθηματική ανάλυση είναι το ολοκλήρωμα και η παράγωγος συνάρτησης.

Δείτε ακόμη